Classification and Statistics of Cut-and-Project Sets Yotam Smilansky, Rutgers HUJI Dynamics Seminar, 2023 Joint with René Rühr and Barak Weiss

- · Cut-and-project sets
- "Spaces of quasicrystals"
 and classification of measures
- · Counting points and patches

Cut-and-Project Sets

- Fix a decomposition Rⁿ = R^d = R^m with projections π_{phys} and π_{int}
 physical space V_{phys} internal space V_{int}
- · Fix a lattice or a grid $LCIR^n$ and a window WcV_{int}

Cut-and-Project Sets Fix a decomposition Rⁿ = R^d R^m with projections π_{phys} and π_{int} physical space V_{phys} internal space V_{int} · Fix a lattice or a grid $LCIR^n$ and a window WcV_{int} Vint 1 R • • • Vphys $\Lambda = \Lambda(\mathcal{L}, \mathcal{W}) := \pi_{phys} (\mathcal{L} \cap \pi_{int}^{-1}(\mathcal{W})) \subset V_{phys}$ The cut-and-project set associated with L and W

Assumptions and Basic Properties

$$\Lambda(\mathcal{L}, W)$$
 is irreducible if $\overline{\pi_{int}(\mathcal{L})} = V_{int}$,
 π_{phys} is 1-1 on \mathcal{L} , and if W is regular:
 \cdot Bounded $\Rightarrow \Lambda$ is uniformly discrete
 \cdot Non-empty interior $\Rightarrow \Lambda$ is relatively dense
 \cdot Boundary of measure zero $\Rightarrow \Lambda$ has asymptotic density
 $D(\Lambda) := \lim_{T \to \infty} \frac{\# \{\Lambda \cap B(o,T)\}}{\text{vol}(B(o,T))} = \frac{m(W)}{\text{covol}(\mathcal{L})}$
For $x \in \pi_{phys}(\mathcal{L})$ define $x^* := \pi_{int}(\pi_{phys}^{-1}(x))$
If $*$ is 1-1 $\Rightarrow \Lambda$ has no periods

Motivations and Relations

• Geometric

A Delone set Γ is Meyer if Γ - Γ is also Delone \Rightarrow Every $\Lambda(\mathcal{L}, \mathcal{W})$ is Meyer Meyer Every Meyer set is contained in some $\Lambda(\mathcal{L}, \mathcal{W})$

- Dynamical

Delone sets are elements of $\mathcal{C}(\mathbb{R}^d) :=$ space of closed subsets of \mathbb{R}^d which carries a natural topology. Set $X_{\Lambda} := \overline{\{\Lambda - t \mid t \in \mathbb{R}^d\}}$, then Hof, Schlottmann Dynamics of $(X_{\Lambda}, \mathbb{R}^d) \Rightarrow$ pure point diffraction

Motivations and Relations

- · Arithmetic
 - Interesting sets have representations as $\Lambda(\mathcal{L}, W)$:
 - I An algebraic integer > 1 is Pisot if all its conjugates lie inside the unit disk.
 - Let $K = Q(J_2)$ with a ring of integers O_k , and set $\mathcal{L} = \{(x, \overline{x}) \mid x \in O_k\}$ the Minkowski embedding \Rightarrow Pisot numbers in $O_k = \Lambda(\mathcal{L}, (-1, 1)) \cap (1, \infty)$
 - I Relaxing assumption and allowing Vint = adeles ⇒ primitive vectors

Example: The Ammann-Beenker Point Set let K=Q(J2), and set ₩ = (· $\mathcal{L} = \left\{ (\mathbf{x}_1, \mathbf{x}_2, \overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2) \mid \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{O}_{\mathsf{K}}, \ \frac{1}{J_2} (\mathbf{x}_1 - \mathbf{x}_2) \in \mathcal{O}_{\mathsf{K}} \right\}$]]52 $\Lambda(\mathcal{L}, W)$ is then the vertex set of the Ammann-Beenker tiling, which can also be defined via a substitution rule with inflation constant $\lambda = 1 + \sqrt{2}$

From Baake and Grimm's Aperiodic Order Vol 1

- · Cut-and-project sets
- "Spaces of quasicrystals"
 and classification of measures
- · Counting points and patches

Action of $ASL_{d}(\mathbb{R})$ and Main Goals $ASL_{d}(\mathbb{R}) = SL_{d}(\mathbb{R}) \times \mathbb{R}^{d} = \begin{cases} volume and orientation \\ preserving affine maps <math>\mathbb{R}^{d} \to \mathbb{R}^{d} \end{cases}$

- Describe counting statistics for typical cut-and-project
 sets with respect to such measures
 ⇒ We obtain counting results for both points and patches

Ratner-Marklof-Strömbergsson Measures [msm] • Fix d+m=n, $\mathbb{R}^{n} = V_{phys} \oplus V_{int}$, WcV_{int} . Define an embedding $ASL_d(\mathbb{R}) \subseteq ASL_n(\mathbb{R})$ $(g, v) \mapsto (\widetilde{g}, v) = \left(\begin{pmatrix} g & O_{d,m} \\ O_{m,d} & I_m \end{pmatrix}, \begin{pmatrix} v \\ O_m \end{pmatrix} \right)$ • Let $\mathcal{L} \in Y_n = ASL_n(\mathbb{R}) / ASL_n(\mathbb{Z}) =$ space of grids, then orbit of a cut-and-project $(g, v) \cdot \Lambda(\mathcal{L}, W) = \Lambda((\widetilde{g, v}), \mathcal{L}, W)$ the space of grids Y_n

Ratner-Marklof-Strömbergsson Measures [msm] Fix d+m=n, Rⁿ=V_{phys}⊕V_{int}, WcV_{int}. Define an embedding $ASL_{d}(\mathbb{R}) \subseteq ASL_{n}(\mathbb{R}) \quad (g, J) \mapsto (\widetilde{g}, J) = \left(\begin{pmatrix} g & O_{d,m} \\ O_{m,d} & I_{m} \end{pmatrix}, \begin{pmatrix} J \\ O_{m} \end{pmatrix} \right)$ • Let $\mathcal{L} \in Y_n = ASL_n(\mathbb{R})/ASL_n(\mathbb{Z}) = \text{space of grids}$, then orbit of a cut-and-project (g,s). $\Lambda(\mathcal{L}, \mathcal{W}) = \Lambda((g,s), \mathcal{L}, \mathcal{W})$ the space of set grids Y_n grids Yn Ratner Orbit closures ASLa(R) L c Yn support ASLa(R)-invariant probability measures described using Haar measures on algebraic groups $ASL_d(\mathbb{R}) < H < ASL_n(\mathbb{R})$, $ASL_d(\mathbb{R}) L = HL$ • Let μ be an ASL_d(R)-invariant ergodic measure on Y_n , and Ψ(L)= Λ(L,W). Then $\mu := \Psi_* \bar{\mu} RMS$ measure on {Λ(hL,W)]heH} grid cut-and-project set in R^a

Classification of Measures

Theorem Any ASL_d(IR)-invariant ergodic measure assigning full measure to irreducible cut-and-project sets is an RMS measure

Classification of Measures

Theorem Any ASL_d(IR)-invariant ergodic measure assigning full measure to irreducible cut-and-project sets is an RMS measure

• SLk, then
$$n = k \cdot deg(K/GL)$$
. Over $|R|$ (and up to conjugation)
 $H' = \left\{ \begin{pmatrix} A_1 \\ A_{deg(K/GE)} \end{pmatrix} \mid A_j \in SL_k(R) \right\}$

• $S_{p_{2k}}$, then n=2k deg(K/Q) (arises only when d=2)

Special Cases and Examples
• dimVphys > dimVint or n prime
$$\Rightarrow$$
 H = ASLn(R) (generic case)
• dimVphys = dimVint = 2 \Rightarrow Three options $d \le k \le n$
• The generic case (H = ASLn(R))
• H = Spu(R) \ltimes R⁴ (can only arise if d=2)
• H = { $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$: A, B \in SL₂(R) \notin R⁴, corresponding to
restriction of scalars for SL₂ and K = $\oplus(A)$.
Ammoun-Beenker K = $\oplus(A_2)$:
K = $\oplus(A_2) \ge a + b \cdot d \mapsto \begin{pmatrix} a & db \\ b & a \end{pmatrix} \in A_{deg(K/A)}(B) = A_2(B)$
 \Rightarrow extended entry-wise to define
Res (SL) \cong (SL_k) = (SL_k)
 $extended$ entry-wise to define

- · Cut-and-project sets
- "Spaces of quasicrystals"
 and classification of measures
- · Counting points and patches

Effective Point Counting Following Schmidt An unbounded ordered family is a collection of Borel subsets $\{ \mathfrak{L}_T \mid T \in \mathbb{R}_+ \}$ of \mathbb{R}^d so that

- $0 < T_1 < T_2 \Rightarrow \Omega_{T_1} \circ \Omega_{T_2}$
- For all T vol (Ω_T) <∞
- · vol(n_T) → ∞

Effective Point Counting Following Schmidt An unbounded ordered family is a collection of Borel subsets $\{\Omega_T \mid T \in \mathbb{R}_+\}$ of \mathbb{R}^d so that

- $0 < T_1 < T_2 \Rightarrow \Omega_{T_1} \circ \Omega_{T_2}$
- For all T vol(Ω_T)<∞
- $vol(\Omega_T) \rightarrow \infty$

Theorem Let μ be an RMS measure. For every $\varepsilon > 0$, every unbounded ordered family and for $\mu - \alpha.e.$ cut-and-project set Λ $\#(\Lambda \cap \Omega_T) = D(\Lambda) \operatorname{vol}(\Omega_T) + O(\operatorname{vol}(\Omega_T)^{\frac{1}{2}+\varepsilon})$ matches best known result even for lattices and $\Omega_T = B(0,T)$

From Baake and Gremm's Aperiodic Order Vol 1

Theorem Let μ be an RMS measure and assume the window W has dim_B $\partial W < m = \dim V_{int}$. There is 0 > 0 so that for any unbounded ordered family, for μ -a.e Λ and any patch P in Λ # { x $\in \Lambda \cap \Omega_T | P_{\Lambda,R}(x) = P$ } = $D(\Lambda,P)$ vol $(\Omega_T) + O(vol(\Omega_T)^{1-\theta})$ For dime $\partial W = m - 1$ any $\theta < \frac{1}{m_{T}}$ is good

A Siegel Summation Formula and a Rogers Second Moment Bound

Let $f \in C_c(\mathbb{R}^d)$ and μ an RMS measure. Define a Siegel-Veech transform $\hat{f}(\Lambda) := \sum_{x \in \Lambda} f(x)$ Marklof-Strömbergsson There exists c>o so that $\int \hat{f}(\Lambda) d\mu(\Lambda) = c \int_{\mathbb{R}^d} f(\mathbf{x}) dvol(\mathbf{x}) - Siegel summation formula$ Theorem There exists C>0 so that if in addition $f: \mathbb{R}^d \to [0, 1]$ and $\hat{f} \in (\mathbb{Z}^2(\mu))$, then Rogers second $\int |\hat{f}(\Lambda) - \int \hat{f}(\Lambda) \, d\mu(\Lambda) \int d\mu(\Lambda) \leq C \sum_{\mathbb{R}^d} f(x) \, dvol(x)$ 5 moment bound ⇒ For counting: use $\hat{\mathbf{1}}_{s}(\Lambda) = \# \{ \Lambda \cap S \}$

- · Cut-and-project sets
- "Spaces of quasicrystals"
 and classification of measures
- · Counting points and patches

